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INTRODUCTION

Globally, rivers have been the most utilized 
natural water source due to their availability and 
accessibility; this has prompted the growth of civ-
ilization and industries close to river banks (Mus-
tafa et al., 2017). However, in the last decades, 
there has been a high increase in river pollution 
due to the human-made activities and climate 
change (Mustafa and Hayder, 2020). Notwith-
standing, the research has focused extensively on 
predicting the river water quality, contaminant 
classification and risk assessment strategies to 

formulate more effective management practices 
and advanced monitoring systems (Tiyasha et al., 
2020). Similarly, water quality monitoring and 
prediction allows a manager to identify a suitable 
option that satisfies a wide range of conditions. 
The water parameters such as turbidity, electrical 
conductivity and dissolved solids in water, for ex-
ample, describe a complex process controlled by 
ecological, hydrological and hydrodynamic fac-
tors that operate at a wide range of spatiotemporal 
scales (Najah et al., 2009).

Furthermore, the water quality index (WQI) 
analysis of rivers is a popular topic in physical 
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ABSTRACT
This research applied a machine learning technique for predicting the water quality parameters of Kelantan River 
using the historical data collected from various stations. Support Vector Machine (SVM) was used to develop the 
prediction model. Six water quality parameters (dissolved oxygen (DO), biochemical oxygen demand (BOD), 
chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and suspended solids (SS)) were predicted. The 
dataset was obtained from the measurement of 14 stations of Kelantan River from September 2005 to December 
2017 with a total sample of 148 monthly data. We defined 3 schemes of prediction to investigate the contribution 
of the attribute number and the model performance. The outcome of the study demonstrated that the prediction 
of the suspended solid parameter gave the best performance, which was indicated by the highest values of the 
R2 score. Meanwhile, the prediction of the COD parameter gave the lowest score of R2 score, indicating the dif-
ficulty of the dataset to be modelled by SVM. The analysis of the contribution of attribute number shows that the 
prediction of the four parameters (DO, BOD, NH3-N, and SS) is directly proportional to the performance of the 
model. Similarly, the best prediction of the pH parameter is obtained from the utilization of the least number of 
attributes found in scheme 1.
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sciences, which involves the calculation and de-
scription of the water quality parameters and the 
contamination transmission mechanism. More-
over, the advent of innovative soft computing and 
artificial intelligence (AI) techniques have led 
researchers in evaluating the component of wa-
ter quality and their internal relationship in time 
series. Recent studies have reported the applica-
tions of the artificial intelligence-based methods 
in the addressing water resources management 
issues (Slaughter et al., 2017; Tomas et al., 2017; 
Wu et al., 2018). Similarly, radial basis network 
(RBF), multilayer perceptron (MLP), and adap-
tive neuro-fuzzy inference system (ANFIS) were 
observed to be suitable in predicting the water 
quality parameters of Karoon River (Emamg-
holizadeh et al., 2013). Additionally, Najah et al. 
(2009) used the artificial neural network (ANN) 
approaches in predicting the water quality param-
eters of Johor River Basin. The outcome of the 
study indicated that the performance of the ANN 
models is efficient, as the mean absolute percent-
age error of 10% was obtained in the prediction of 
the water quality parameters. Zhang et al. (2010) 
proposed a tool for the water allocation schemes 
analysis of Jiaojiang River basin using the wa-
ter quantity-quality model. Nikoo and Mahjouri 
(2013) applied fuzzy inference system and proba-
bilistic support vector machines in estimating the 
probabilistic water quality of water resources. The 
outcome of the study indicated that the models 
could be used in feasibility studies of water con-
servation projects. (Antanasijević et al., 2014) es-
timated the dissolved oxygen (DO) concentration 
in Danube River using a general regression neural 
network (GRNN) model. The predicted outcome 
obtained from the study was compared with the 
output observed from the Monte Carlo simula-
tions. The authors recommended that the GRNN 
model is an efficient tool for the estimation of 
the DO concentration in rivers. Heddam (2016a; 
2016b) predicted the water quality parameters us-
ing ANN in several case studies. He claimed that 
the AI methods are sufficient for modelling the 
water quality parameters in time series. Elkiran 
et al. (2018) estimated the DO concentration of 
Mathura River in India using feed-forward neural 
network, multilinear regression, and ANFIS. In 
the study, DO concentration, biochemical oxygen 
demand (BOD), temperature and pH parameters 
of the river were used for the prediction. The find-
ings obtained from the study indicated that the 
ANFIS models greatly improved the performance 

over the feed-forward neural network and multi-
linear regression in the validation step. 

In view of the past research work mentioned, 
a comparative study on the implementation of the 
AI techniques using different software packages 
is necessary to improve the accuracy level and its 
applications. However, several data analysis pro-
grams do not involve comprehensive modifica-
tion in the implementation of the AI techniques. 
Hence, this research study explores the ratifica-
tion of one of AI approaches, namely support vec-
tor machines (SVM), for monitoring and predict-
ing river water quality parameters.

METHODOLOGY

Collection of Data 

In this study, the historical dataset of wa-
ter quality parameters (dissolved oxygen (DO), 
biochemical oxygen demand (BOD), chemical 
oxygen demand (COD), pH, ammonia nitrogen 
(NH3-N), and suspended solids (SS)) was used. 
The dataset was obtained from the measurement 
of 14 stations of Kelantan River from September 
2005 to December 2017 with a total sample of 148 
monthly data. Missing values were found in the 
dataset, since no measurements were performed 
on that day. The missing values were filled by us-
ing the interpolation method. The location of the 
measurement station along the river is presented 
in Figure 1.

Prediction Model Scheme

Figure 1 depicted the water flow of the river to 
the area of measurement station 1 (area 1). Hence, 
the water properties in area 1 are affected by the 
water quality in other areas. This is because water 
from all areas gathers and flows to area 1. How-
ever, to improve the measurement efficiency, we 
can replace the conventional water quality mea-
surement in area 1 by using a prediction model. 
The model for six parameters was developed by 
using the data of water quality in other areas as 
input variables. In this case, we considered the 
prediction of a parameter that is affected by the 
value of other parameters. For example, the value 
of the COD parameter is utilized to predict the 
value of the BOD parameter. Therefore, the num-
ber of input variables is equal to the multiplica-
tion of the number of areas by six parameters. The 
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development of the model was performed using 3 
schemes. Those schemes differ by the number of 
areas that are considered to affect the water quali-
ty in area 1. In the first scheme, we considered the 
edge areas only, i.e. area 8, 10, 11, 13, 14, with the 
total number of input variables of 30. Meanwhile, 
the second scheme was conducted by considering 
the edge and branch areas, i.e. area 4, 8, 10, 11, 
12, 13, 14, with the total number of input vari-
ables as 42. In the third scheme, we considered all 
the remaining areas, i.e. area 1–13, with the total 
number of input variables of 78. The detailed in-
formation of those prediction model schemes can 
be seen in Table 1. 

Support Vector Machine

In this present study, the model prediction was 
generated using Support Vector Machine (SVM). 
SVM is a branch of machine learning (ML) tech-
nique developed using the theory of statistical 
learning. The basic principle of the SVM imple-
mentation in pattern recognition is the mapping of 
the input vectors into a possibly higher dimension 
of feature space, either linearly or non-linearly. 
The mapping process is controlled by the type 
of kernel function. Then, an optimal hyperplane 
is constructed to obtain the maximal separation 
of two classes, or extended to multi-class. The 
SVM training is performed by seeking a globally 

optimized solution and managing the over-fitting 
problem. Therefore, the SVM method has an ad-
vantage in processing a large number of features 
(Vapnik, 1998). SVM is also known as the largest 
margin classifier, since this method tries to find 
an optimal hyperplane that results in the largest 
margin. The representation of the hyperplane and 
margin used in SVM is presented in Figure 2.

The main goal of SVM is to construct a clas-
sifier from the available samples by avoiding mis-
classifying in future predictions. The separating 
hyperplane used in the classifier is expressed as 
�⃗⃗⃗�𝑊 ∙ 𝑥𝑥 + 𝑏𝑏 = 0 , which refers to the formulation 
of 𝑦𝑦𝑖𝑖(�⃗⃗⃗�𝑊 ∙ 𝑥𝑥 + 𝑏𝑏)  ≥ 1, 𝑖𝑖 =  1, . . . , 𝑁𝑁 . During the 
training, SVM will look for an optimal separating 
hyperplane by minimizing (1/2)‖�⃗⃗⃗�𝑊 ‖2

  subject 
to the constraint. In this case, ‖�⃗⃗⃗�𝑊 ‖2

  represents 
the Euclidean norm of �⃗⃗�𝑤  , which maximizes the 
distance between the hyperplane and support 

Figure 1. The map of measurement station along the Kelantan River

Table 1. The detail information of 3 prediction model 
schemes

Scheme Considered Areas No. of input 
variables

1 Edge areas:
Area 8, 10, 11, 13, 14 5 x 6 = 30

2 Edge and branch areas:
Area 4, 8, 10, 11, 12, 13, 14 7 x 6 = 42

3 All the remaining areas:
Area 1–13 13 x 6 = 78
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vectors. The training procedure of SVM is con-
verted into convex Quantum Programming (QP) 
problem by utilizing Lagrange multipliers. The 
solution of the QP problem is represented as a 
global optimal expressed as:

�⃗⃗⃗�𝑊 = ∑𝑦𝑦𝑖𝑖𝛼𝛼𝑖𝑖 ∙ 𝑥𝑥 𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 (1)

where:  �⃗�𝑥𝑖𝑖  represents support vector when αi > 0. 
After the training process, the decision 
function used in prediction is formulated 
as:

𝑓𝑓(�⃗�𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(∑𝑦𝑦𝑖𝑖𝛼𝛼𝑖𝑖 ∙ �⃗�𝑥 ∙ �⃑�𝑥𝑖𝑖 + 𝑏𝑏
𝑁𝑁

𝑖𝑖=1
) (2)

where: sgn() represents the given sign function. 

Moreover, to allow errors during the training, 
slack variable (ζ) with 𝜁𝜁𝑖𝑖 > 0, 𝑖𝑖 =  1, . . . , 𝑁𝑁  were 
introduced by Cortes and Vapnik (Vapnik, 1995). 
This technique is known as a soft margin, which 
is effective in preventing overfitting. By consider-
ing the slack variable, the relaxed separation con-
straint is formulated as

𝑦𝑦𝑖𝑖(�⃗⃗⃗�𝑊 ∙ 𝑥𝑥 + 𝑏𝑏)  ≥ 1 − 𝜁𝜁𝑖𝑖, 𝑖𝑖 =  1, . . . , 𝑁𝑁 (3)
and the optimal hyperplane is obtained by 

minimizing

1
2 ‖�̅�𝑤‖

2 + 𝐶𝐶∑𝜁𝜁𝑖𝑖
𝑁𝑁

𝑖𝑖=1
 (4)

where: C represents a regularization parameter 
that controls a trade-off between the op-
timal margin and training error. Similarly, 
to obtain an optimal hyperplane, the input 
vector was mapped into a higher dimen-
sional Hilbert space, in which the process 

is controlled by the kernel function. The 
kernel functions that are commonly used 
in the SVM model are RBF, linear, and 
polynomial kernel function. The polyno-
mial kernel function can be expressed as:

𝐾𝐾(𝑥𝑥, 𝑦𝑦)  =  (〈𝑥𝑥, 𝑦𝑦〉 + 1)𝐸𝐸  (5)
where: E represents the exponent value. In the 

case of the linear kernel, the value of the 
exponent value is 1. Meanwhile, the RBF 
kernel function can be expressed as:

𝐾𝐾(𝑥𝑥, 𝑦𝑦)  =  𝑒𝑒−(𝛾𝛾∙〈𝑥𝑥−𝑦𝑦,𝑥𝑥−𝑦𝑦〉2) (6)

Hyperparameter Tuning

The performance of the SVM model was im-
proved by performing a hyperparameter tuning 
procedure. This process aims to obtain the opti-
mal parameter that will be used in model devel-
opment. The SVM parameter that is tuned in this 
step consists of a regularization parameter (C), 
kernel coefficient (gamma), and kernel function. 
The option of parameter values used in the hyper-
parameter tuning is presented in Table 2.

Model Validation 

The performance of the SVM model was mea-
sured by calculating two validation parameters, 
i.e. coefficient correlation (R2) and mean square 
of error (MSE). The parameters were used as a 
reference to determine the validity of the model 
for each scheme and parameter. These parameters 
were formulated as:

𝑅𝑅2 =  1 −
∑ (𝐴𝐴𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
∑ (𝐴𝐴𝑖𝑖 − �̅�𝐴)2𝑛𝑛

𝑖𝑖=1
 (7)

Figure 2. The representation of hyperplane and margin in SVM
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𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛 ∑(𝐴𝐴𝑖𝑖 − 𝑃𝑃𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1
 (8)

where: Ai, Ᾱ and Pi represent the actual values in 
i-th month, the average of actual values 
and predicted values, respectively, while 
n represents the number of data. In the 
case of MSE, we calculated those param-
eters by using a scaled dataset to allow 
the comparison of the results amongst the 
water quality parameters.

RESULTS AND DISCUSSIONS

Hyperparameter tuning

The performance of the SVM model was 
improved by conducting hyperparameter tuning 
for each scheme and parameter. The optimized 
parameter of the SVM model for schemes 1, 2 
and 3 are presented in Tables 3, 4 and 5, respec-
tively. We found that the sigmoid kernel function 
is not suitable for our study, as this function was 
not chosen from the hyperparameter tuning re-
sults. The chosen optimized kernel function for 
all parameters is the RBF function, except for 
the parameter for NH3-N. The optimized values 
of the regularization parameter (C) are varied for 
each water quality parameter. This is related to 
the tolerance level of the SVM model to accept 
errors during the training. The variation of the C 
parameter reflected the different characteristics of 
the dataset of water quality parameters.

Model validation 

The SVM models developed by the optimized 
hyperparameter were evaluated by comparing 
the predicted values with the actual ones. The 
plot of predicted values against the actual ones 
of scheme 1 is presented in Figure 3. According 
to Figure 3, we found that all of the data points 
were close to the straight diagonal line, except the 
BOD parameter, indicate low values of error. We 
also found that the deviation of the data points 
of the BOD parameter is quite large compare to 
other parameters. 

The results of the validation parameter, i.e. 
R2 and MSE, for schemes 1, 2 and 3 are pre-
sented in Tables 6, 7 and 8, respectively. As for 
scheme 1, we found that the R2 score of train data 
for all water quality parameters is more than 0.80, 
which signifies a satisfactory result in predicting 
the train data. However, the true quality of the 
model is evaluated according to the ability in pre-
dicting the external data as represented by the R2 
score of test data. We found that the prediction 
of the SS parameter gave the best performance 
with an R2 score of 0.901. Meanwhile, the worst 
performance was found in the prediction of the 
COD parameter with an R2 score of 0.241. This 
indicates that the data set of the COD parameter is 
more complex than others. In this case, the num-
ber of used attribute seems not enough to reveal 
the pattern of the COD data set. 

As for scheme 2, we found that the R2 of train 
data for all the water quality parameters is sat-
isfactory, as all the R2 values were observed to 
be more than 0.90. However, the R2 of test data 
is different for each parameter. The best perfor-
mance is obtained from the prediction of the SS 
parameter with an R2 score of 0.940. Meanwhile, 
the prediction of COD gives the worst perfor-
mance with an R2 score of 0.499. By comparing 
the results of COD prediction in scheme 1, we 
found that the addition of attribute in scheme 2 
improves the R2 score from 0.241 to 0.449. Even 

Table 4. Optimized SVM parameter used in scheme 2

Water 
Parameter

SVM Parameter
C Gamma Kernel

DO 10 auto rbf
BOD 10 auto rbf
COD 100 scale rbf
pH 10 scale rbf

NH3-N 10 scale poly
SS 100 auto rbf

Table 2. Parameter and values option used in 
hyperparameter tuning

Parameter Values Option
C [0.1, 1, 10, 100]
Gamma [“auto”, “scale”]
Kernel [“rbf”, “poly”, “sigmoid”]

Table 3. Optimized SVM parameter used in scheme 1

Water 
Parameter

SVM Parameter
C Gamma Kernel

DO 100 auto rbf
BOD 10 scale rbf
COD 100 scale rbf
pH 10 auto rbf

NH3-N 1 scale poly
SS 100 auto rbf
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though the R2 score is still low, the improvement 
indicates that the number of attributes contributed 
to the R2 score of COD prediction. 

As for scheme 3, we found that the R2 score 
of the train data for all water quality parameters is 
good with the score of more than 0.90. According 
to the R2 score of test data, we found that the pre-
diction of the SS parameter gives the best result 
with an R2 score of 0.936. Meanwhile, the worst 
performance is obtained from the prediction of 

COD with an R2 score of 0.490. The value of the 
R2 score of COD prediction in scheme 3 is not 
significantly different compared to the value in 
scheme 2. This indicates that the addition of at-
tribute in scheme 3 failed to improve the results 
of COD prediction. Generally, the best and worst 
results of all schemes were obtained from the pre-
diction of the SS and COD parameters, respec-
tively. This indicate that the data quality of the 

Table 5. Optimized SVM parameter used in scheme 3

Water 
Parameter

SVM Parameter
C Gamma Kernel

DO 10 auto rbf
BOD 10 auto rbf
COD 100 auto rbf
pH 10 scale rbf

NH3-N 100 scale poly
SS 100 auto rbf

Table 6. The results of the validation parameter for 
scheme 1

Parameter
R2 MSE

Train Test Train Test
DO 0.992 0.710 0.008 0.290

BOD 0.992 0.603 0.008 0.397
COD 0.992 0.241 0.008 0.759
pH 0.992 0.857 0.008 0.143

NH3-N 0.886 0.636 0.820 0.874
SS 0.992 0.901 0.008 0.099

Figure 3. The plot of actual and predicted values of the water quality parameters obtained from scheme 1
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SS and COD parameters is quite similar for each 
measurement site.

The contribution of the attribute number in 
each scheme on the model performance was in-
vestigated by comparing the R2 score of test data 
for all water quality parameters, as presented 
in Figure 4. The number of the attribute from 
scheme 1 to scheme 3 is increased and leads to 
the increasing of the model complexity. The posi-
tive correlation was found in the R2 scores of the 
DO, BOD, NH3-N and SS parameters. In these 
parameters, the increase of the attribute number 
leads to an increasing in the R2 score. This shows 
that the attribute number can improve the perfor-
mance of the model. Conversely, the R2 score of 
the pH parameter decreases as the addition of the 
attribute number increases. This point out that the 
increasing of attribute number lead to too com-
plex model and caused overfitting state. In the 
case of the prediction of the COD parameter, we 
found that the best R2 score was obtained from 
scheme 2. However, the difference in the R2 score 
between scheme 2 and scheme 3 is not signifi-
cant. The overall results reveal the importance of 
the attribute number to obtain satisfying results. 

Moreover, we found that no scheme that gives the 
best performance for all parameters.

CONCLUSION

The values of six water quality parameters, i.e. 
dissolved oxygen (DO), biochemical oxygen de-
mand (BOD), chemical oxygen demand (COD), 
pH, ammonia nitrogen (NH3-N) and suspended 
solids (SS) of station 1 were predicted by using 
the SVM model. The prediction was performed 
by defining 3 schemes according to the number of 
attributes used for model development. Amongst 
the water quality parameters, the prediction of the 
SS parameter gave the best results with the high-
est values of the R2 score for both the train and 
test data. Meanwhile, the worst results were ob-
tained from the prediction of the COD parameter. 
Regarding the contribution of attribute number 
in each scheme, we found that the prediction of 
four parameters, i.e. the DO, BOD, NH3-N and 
SS parameters, were improved as the contribution 
of the attribute number increases. Conversely, the 
best prediction of the pH parameter was obtained 
from scheme 1 with the least number of attributes. 

Table 7. The results of the validation parameter for 
scheme 2

Parameter
R2 MSE

Train Test Train Test
DO 0.992 0.742 0.008 0.258

BOD 0.993 0.668 0.007 0.332
COD 0.992 0.499 0.008 0.501
pH 0.993 0.834 0.007 0.166

NH3-N 0.992 0.810 0.008 0.190
SS 0.992 0.940 0.008 0.060

Table 8. The results of the validation parameter for 
scheme 3

Parameter
R2 MSE

Train Test Train Test
DO 0.992 0.773 0.008 0.227

BOD 0.992 0.691 0.008 0.309
COD 0.993 0.490 0.007 0.510
pH 0.993 0.815 0.007 0.185

NH3-N 0.992 0.843 0.008 0.157
SS 0.993 0.936 0.007 0.064

Figure 4. The comparison of R2 score of test data of water quality parameters calculated by using different 
schemes
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